
rivatives of the corresponding functions with respect to the density; P~r' Ptr' vapor and gas 
density at triple point; ~c V = (c~alc--c~XP)/c~XP; ~p = (pcalc--peXp)/pexp; ~T, ~R, ~2R, Po 

+ + v V v ~ ' 

Ai, Di, Ei, BI, C~, constants corresponding to the cases p ~ PC (+) and p < PC (-)" 
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DIFFUSIONAL EXTRACTION OF MATERIAL FROM MODEL 

POROUS BODIES 

R. Rakadzhiev, N. V. Pavlyukevich, 
A. Trifonov, S. Radev, 
R. Kuzmanova, and B. Nikolova 

UDC 532.72:541.182 

The solution and diffusional extraction of solid materials from porous membranes 
is investigated theoretically and experimentally. 

The extraction of materials from porous bodies is widespread in commercial technology 
and in nature: the separation of inorganic and organic products in porous catalysts, the 
leaching out of mineral salts, the extraction of oil from cells of plant origin, hydrometal- 
lurgical treatment, etc. Similar subjects were investigated, e.g., in [1-3]. However, in 
describing these processes, mass transfer in a single capillary is most often considered, 
with a specified density of the solute at the exit, or the mass transfer in the solution and 
diffusional extraction in a porous body and outside it is not investigated in a consistent 
formulation. In the present work, results are given of experimental and theoretical inves- 
tigations of the successive processes of solution of a solid material and its diffusional ex- 
traction from model porous membranes, the capillaries of which are entirely filled with ma- 
terial in the form of a solid phase or solution. A mathematical model of the above-noted 
processes is proposed in the form of a refined version of that described in [4]. 

As follows from [5], reflective spectroscopy, based on the phenomenon of attenuation of 
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the total internal reflection [6], allows the mass transfer in a porous membrane to be traced 
in the evaporation of liquid from the capillaries. In [5], thermal membranes of thickness 
16, 15.5, and 12.5 ~m and pore diameter d = 0.2, 0.5, and i ~m, respectively, were used. In 
the present work, with the same experimental procedure and in analogous membranes, it proved 
possible to measure the absorption of radiation in a certain layer of material on solution in 
a porous membrane. The height of this layer coincides with the so-called penetration depth 
6 of the IR radiation employed [6]. 

The required contact between the porous membrane and the optical prism was achieved by 
means of an elastic metallic lattice pressed to the membrane by a shallow (~3.10 -3 m) cylin- 
drical polyethylene bath of diameter h (see Fig. 2 in [5]). The filling of pores with ma- 
terial was accomplished in such a way as to avoid gas bubbles. Otherwise, the mechanism of 
extraction of the material from the porous body becomes significantly different [2, 7]. 

The extraction curve, i.e., the dependence of the reflected-radiation intensity I on the 
time t, was plotted at constant wavelength on a UR-20 spectrometer made by K. Zeiss-Jena 
(German Democratic Republic), with the appropriate attachment from the same manufacturer; re- 
cording began simultaneously with filling of the bath with solvent. Using this attachment, 
multiple reflection at the walls of the KRS-5 prism was achieved. The dependence l(t) was 
converted to the function E(t), in which E = log (Io/I) is related to the molar concentration 
c* of the material as follows [8] 

E = l g ,  l~ =~c*& (1) 
I 

The absorption coefficient e was determined in a separate experiment using an expression ana- 
logous to Eq. (i), with the passage (and not the reflection) of beams through a layer of solu- 
tion with a known concentration and thickness. The penetration depth was determined from 
the formula [9] 

6 = c ~  I o - - I  

c~Ne Io 

In the experiment a solution of cocoa butter in chloroform (CHCIa) was investigated. The 
diffusion coefficient D was determined by the method proposed in [9]. 

In the mathematical description of the given process, two problems must be distinguished: 
i) the solution of the solid material, taking account of the motion of the phase interface; 
2) diffusional extraction of the solute from the membrane capillaries. In both cases a one- 
dimensional model is used. 

For the first boundary problem the following system of equations is written (Fig. i): 

0 e l  ' + ~ V  2 0 e l  - -  D 62cl , L < x <~ oo, t > 0, (2) 
Ot Ox Ox 2 

Oc2 D 02c2 Oc~ + v~ - -  = , x~ (t) ~ x ~ L, t > O ,  
O---F ~ Ox Ox~ (3) 

with the boundary conditions 
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x = &,  c2 - -  c,, (4) 

dx~ D dc2 
dt 

(5) 

and the initial conditions 

x = L, cl = c2, (6)  

at1 = I I  Oc___~2 , (7) 
Ox Ox 

x =  oo, c : = 0  (8) 

t = O ,  q = O ,  C~=Cs, x s = L ,  (9) 

where  c i i s  t h e  mass  c o n c e n t r a t i o n  (g /cm a) o f  t h e  s o l u t e  in  t h e  b a t h  ( i  = 1) and in  t h e  mem- 
b r a n e  ( i  = 2) .  

The p r o b l e m  in  Eqs .  ( 2 ) - ( 8 )  i s  a c o n j u g a t e  p r o b l e m  o f  mass  t r a n s f e r  w i t h  b o u n d a r i e s  X s ( t )  
be tween  t h e  media  t h a t  a r e  moving and unknown p r i o r  to  s o l u t i o n .  T h e r e f o r e ,  t h e  b o u n d a r y  c o n -  
d i t i o n  i n  Eq. (5) and t h e  r e l a t i o n  be t w een  t h e  v e l o c i t y  of  m o t i o n  o f  t h e  s o l u t i o n  v= and 
d x s / d t  a r e  o b t a i n e d a s  t h e  m a t c h i n g  c o n d i t i o n s  a t  t h e  i n t e r f a c e ,  u s i n g  t h e  l aws  o f  c o n s e r v a -  
t i o n  of  the  d i s s o l v e d  component  and t h e  whole  m i x t u r e  [10,  1 1 ] .  Then 

v2--  l-- 
dt 9~ 

The additional condition in Eq. (4) at x = x s reflects the equilibrium nature of the solution 
process. Using the same conservation laws at the boundary x = L, the result obtained, in a 
one-dimensional formulation, consists of Eq. (7) and the relation vl = ~va, which is taken 
into account in writing Eq. (2). At the same time, it is assumed that Eq. (6) holds, al- 
though, generally speaking, this condition may not be satisfied in the case of vary narrow 
capillaries. 

It may readily be shown that the problem formulated in Eqs. (2)-(9) admits of the self- 
similar variable 

x--1 

n -  2 V - ~ '  

by means of which the solution of the problem is written in the form 

c= (x, "~) = 1 - -  ocA V~- err {rl + o~B} + err {o~ (1 , - -  B)} 
exp {--[cr (1 - -  B)] 2} ( l O )  

c ,  (x, "v) = [ 1--c A erf -t- err B)} ] erfc {rl -q-  TIB} 

where a is the constant in the expression for the law of motion of the solution front 
2~r determined from the transcendental equation 

err {o~B} + err {= (1 --B)} - -  exp {--loYolA (lt~-- B)] z} -~- II erfc {odIB} exp: {(&IIB)2} = 0, 
exp {(~B) 2} 

(ii) 

( l - - x  s = 

A _  Ps ( 1  cs ) ,  B =  I P8 (12) 
C~ --- C Ps P~ 

(Note that in [4] it must be assumed that x s = ~r i.e., ~ has a different value.) 

Afer termination of the process, i.e., after the solution front reaches the membrane 
boundary x = 0, diffusion of the dissolved component from the capillaries into the volume of 
the solution occurs. This stage of extraction is described by the following system of equa- 
tions and boundary conditions: 
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TABLE I. Time Dependence of E 

E 

t--tp, sec experime~aldata ca~ulation 

0 
15 
30 
60 

�9 90 
120 
150 
180 

0,2566 
0,1975 
0,1478 
0,0876 
0,0532 
0,0330 
0,0214 
0,0153 

0,2560 
0,1790 
0,1474 
0,1110 
0,0910 
0,0785 
0,0699 
0,0636 

0,2560 
0,1801 
0,1439 
0,0949 
0,0842 
0,0443 
0,0312 
0,0224 

0,2560 
0,1765 
0,1415 
0,0919 
0,0598 
0,0389 
0,0253 
0,0164 

07.2 c~2 
- , O < x <  1, ~ > ~ r , ,  (13) 

& 8 x  2 

071 -- OzCl , 7 >  1, *>Tj , ,  (14) 
& Ox 2 

x = O, ---=_~- = O, ( 1 5 )  
Ox 

7,=E, & -neT,, 
o7 0x ' (16) 

x---+oo, Ol = 0. (17) 

The most n a t u r a l  i n i t i a l  c o n d i t i o n s  f o r  the  sy s t em in  Eqs,  ( 1 3 ) - ( 1 7 )  a r e  

cl (x, ~v) = , ( x ) ,  (18)  

c~(x, %) = ~(~), (19)  

where t h e  c o n c e n t r a t i o n  p r o f i l e s  q0(x) and ~(x)  a r e  o b t a i n e d  from the  s o l u t i o n  o f  Eqs.  ( 1 0 ) -  
(12) o f  t he  p r e c e d i n g  p rob lem up to the  moment ~p a t  which s o l u t i o n  ends .  This  f o r m u l a t i o n  
of  t h e  p rob lem t a k e s  no a c c o u n t  of  the  i n f l u e n c e  o f  f r e e  c o n v e c t i o n  on t he  mass t r a n s f e r ;  
t h i s  p r o c e s s  i s  a c o n s e q u e n c e  of  the  dependence  o f  the  s o l u t i o n  d e n s i t y  on the  c o n c e n t r a -  
t i o n .  I t s  i n f l u e n c e ,  as  shown by e s t i m a t e s ,  may become s i g n i f i c a n t  in  t he  r e g i o n  o u t s i d e  
the  c a p i l l a r i e s ,  I n  the  g i v e n  o n e - d i m e n s i o n a l  model ,  f r e e  c o n v e c t i o n  in  the  q u a s i s t e a d y  a p -  
p r o x i m a t i o n  may be t aken  i n t o  a c c o u n t  u s i n g  the  c o r r e s p o n d i n g  s o l u t i o n  f o r  the  c a s e  o f  a 
v e r t i c a l  p l a t e  o b t a i n e d  i n  [12 ] ,  I f  t he  mean d i f f u s i o n a l  f l u x  o v e r  the  membrane h e i g h t  a t  
x = 1 is calculated from this solution for the given problem, it is found that 

0cl _O,66L [ g(po--Pl) ] 1/4- . . . .  q.  (20) 
0x pDh 

The conditions in Eq. (16) must be used in order to write Eq. (20) in the form of the 
boundary condition for Eq. (13). Then 

8~ 0.66 L [g(P~ ] ~/4" 
O-x -- II- pDh . o~--~--~c~, x = l .  ( 2 1 )  

Thus,  t he  problem o f  the  d i f f u s i o n  of  the  d i s s o l v e d  component ,  t a k i n g  f r e e  c o n v e c t i o n  
i n t o  a c c o u n t ,  r e d u c e s  to s o l v i n g  Eqo (13) ,  w i t h  the  boundary  c o n d i t i o n s  in  Eqs.  ( 1 5 ) - ( 2 1 )  
and the  i n i t i a l  c o n d i t i o n  i n  Eq. (19) .  

I f  t he  f u n c t i o n  p : ( c a )  in  Eq. (21) i s  a p p r o x i m a t e l y  r e p l a c e d  by some f i x e d  v a l u e  ~* known 
a priori, the solution of the problem is written in series form [13] 

co (x, T) = 2 2cos(?~) fJ2F(?~) x " 2( T *p)}, (22) 
" ,~=1 sin~% ?~ -b [~2+[~ e p I--~ - -  

where 
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1 

F (y.) = .I cos (?,~x) qo (x) dx, 
0 

and Yn are the positive roots of the equation y tan Y = ~. 

The numerical values of the quantities used in the present work were as follows: Ps = 
1.145 g/cm3; c s = 0.6 g/cm3; PS = 0.975 g/cm3; Po = 1.498 g/cm3; p = 0.0051P; D = 2.17.10 -e 
cm2/sec; ~ = 3.46.10 -4 cm; s = 1064 liter/mole.cm; h = 2 cm; ~ = 0.4; L = 12.5.10 -~ cm; M = 
860. Comparison with experimental data involves calculating the quantity 

8/L 
1000 f E = ~, - - c s L  c~ (x, ~c) d~. 

M ~ ( 2 3 )  
0 

Table 1 compares the experimental -- E = log (Io/I) -- and calculated values of E. In the 
third and fourth columns, the results of numerical solution of the problem of solute diffu- 
sion when free convection, respectively, is not -- Eqs. (13)-(19) -- and is taken into account 
are given. In the fifth column, E is calculated on the basis of the solution in Eq. (22), 
with p~ chosen in the form 

H 
p~ = P0-- (P0-- Ps) I +H 

since it is assumed that the density of the solution depends linearly on the concentration 
[12] and that c1(L)/cs ~N/(I ~H). It is evident from Table 1 that taking free convection into 
account significantly improves the agreement between calculation and experiment. At the same 
time, comparison with [4] shows that the approximate expressions in Eq. (14) or even (15) of 
[4], obtained from the solution of the problem in Eqs. (13)-(19) when @ = 0, ~ = i, may be 

' [ ~Dh ] ~ / 2 1  
used for initial estimates at t ~  g(P0--P~) 2~2~D " 

NOTATION 

x, coordinate; L, membrane thickness; Xs, coordinate of solution front; ~, porosity; Cs, 
mass concentration of material in saturated solution; PS, density of solid material; Ps, 

cs - - c =  x Dt 
- - -  ( f =  1, 2); ~ = - - ;  , =  density of saturated solution; ci= cs--c= L -~-;P0, density of solvent; p~, 

density of solution at x = I; h, membrane height; g, acceleration due to gravity; ~, dynamic 

viscosity of the solvent; M, molecular weight of the solute; erfz= ~/~ exp(--zy) dzz, erfc z = 

l--er f z. 0 
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MOVING DYNAMIC THERMOCOUPLE 

S. P. Polyakov UDC 536.532:533.08 

It is shown theoretically that the temperature measured by a dynamic thermocouple 
corresponds to the mean mass temperature of the junction. A method of a moving 
dynamic thermocouple is proposed. 

Among contact methods of the diagnostics of thermal plasma, the dynamic thermocouple 
occupies a special place, since it allows local values of the plasma temperature, heat flux, 
and heat-transfer coefficient in the thermocouple to be obtained from the result of a single 
measurement. In the measurements, the change in heating temperature of the thermocouple junc- 
tion in a regular cycle is measured as a function of the time. However, it remains unclear 
what temperature of the thermocouple is meant here, since a temperature difference is estab- 
lished over the radius of the thermocouple in regular conditions. 

To simplify the solution of the given problem, consider that a cylindrical thermocouple 
is used, i.e., a butt-welded thermocouple. For the calculations it is assumed that the tem- 
perature is zero on the thermocouple axis and changes linearly over the radius 

Tv (r) = klrp. ( l)  

Then the emf (E) on a rectilinear section of the curve E = f(T) will be of analogous form 

Ep (r) = kklr v. (2) 

Since calculation shows that in a plasma jet with T ~ 4000~ and v ~ i00 m/sec, for a 
junction with rpc ~ 0.5.10 -3 m, the temperature drop over the radius is no more than 200~ 
while the temperature coefficient of resistivity do = 2.6.10 -~ deg -I is small, the change in 
resistivity over the thermocouple radius may be neglected. Then, dividing the cross section 
of the thermocouple junction into concentric rings of equal area, they may be regarded as in- 
dependent sources of emf, with equal internal resistance, connected in parallel. In this 
case the effective emf may be expressed as 

n--I 

n i = 0  

In v iew o f  Eq. ( 2 ) ,  Eq. (3) may be r e w r i t t e n  in  t h e  form 

n - - I  

Ee klk2 ~_j rPi" (4) 
n i--O 

The value of rpi may be obtained from the condition that the concentric rings into which 
the thermocouple cross section is divided are of equal area 

/~--I 
rpl = r;o ~l/ -~ (5) 

Finally, 
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